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In the computational-mechanics structural analysis of one-dimensional cellular automata the
following automata-theoretic analogue of the change-point problem from time series analysis
arises: Given a string σ and a collection {Di} of finite automata, identify the regions of σ that
belong to each Di and, in particular, the boundaries separating them. We present two methods
for solving this multi-regular language filtering problem. The first, although providing the ideal
solution, requires a stack, has a worst-case compute time that grows quadratically in σ’s length
and conditions its output at any point on arbitrarily long windows of future input. The second
method is to algorithmically construct a transducer that approximates the first algorithm. In
contrast to the stack-based algorithm, however, the transducer requires only a finite amount of
memory, runs in linear time, and gives immediate output for each letter read; it is, moreover, the
best possible finite-state approximation with these three features.
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I. INTRODUCTION

Imagine you are confronted with an immense one-
dimensional dataset in the form of a string σ of let-
ters from a finite alphabet Σ. Suppose moreover that
you discover that vast expanses of σ are regular in
the sense that they are recognized by simple finite au-
tomataD1, . . . ,Dn. You might wish to bleach out these
regular substrings so that only the boundaries sep-
arating them remain, for this reduced presentation
might illuminate σ’s more subtle, larger-scale struc-
ture.

This multi-regular language filtering problem is the
automata-theoretic analogue of several, more statis-
tical, problems that arise in a wide range of dis-
ciplines. Examples include estimating stationary
epochs within time series (known as the change-point
problem [1]), distinguishing gene sequences and pro-
moter regions from enveloping junk DNA [2], detect-
ing phonemes in sampled speech [3], and identifying
regular segments within line-drawings [4], to men-
tion a few.

The multi-regular language filtering problem arises
directly in the computational-mechanics structural
analysis of cellular automata [5]. There, finite
automata recognizing temporally invariant sets of
strings are identified and then filtered from space-
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time diagrams to reveal systems of particles whose
interactions capture the essence of how a cellular au-
tomaton processes spatially distributed information.

We present two methods for solving the multi-
regular language filtering problem. The first cov-
ers σ with maximal substrings recognized by the au-
tomata {Di}. The interesting parts of σ are then
located where these segments overlap or abut. Al-
though this approach provides the ideal solution to
the problem, it unfortunately requires an arbitrarily
deep stack to compute, has a worst-case compute time
that grows quadratically in σ’s length, and conditions
its output at any point on arbitrarily long windows
of future input. As a result, this method becomes
extremely expensive to compute for large data sets,
including the expansive space-time diagrams that re-
searchers of cellular automata often scrutinize.

The second method—and our primary focus—is to
algorithmically construct a finite transducer that ap-
proximates the first, stack-based algorithm by print-
ing sequences of labels i over segments of σ recognized
by the automaton Di. When, at the end of such a seg-
ment, the transducer encounters a letter forbidden by
the prevailing automatonDi, it prints special symbols
until it resynchronizes to a new automatonDj . In this
way, the transducer approximates the stack-based al-
gorithm by jumping from one maximal substring to
the next, printing a few special symbols in between.
Since it does not jump to a new maximal substring
until the preceding one ends, however, the transducer
can miss the true beginning of any maximal substring
that overlaps with the preceding one. Typically, the
benefits of the finite transducer outweigh the occur-
rence of such errors.

www.mctague.org/carl
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In contrast with the stack-based algorithm it ap-
proximates, however, the transducer requires only
a finite amount of memory, runs in linear time,
and gives immediate output for each letter read—
significant improvements for cellular automata struc-
tural analysis and, we suspect, for other applica-
tions as well. Put more precisely, the transducer
is Lipschitz-continuous (with Lipschitz constant one)
under the cylinder-set topology, whereas the stack-
based algorithm, which conditions its output on arbi-
trarily long windows of future input, is generally not
even continuous.

It is also worth noting that the transducers thus
produced are the best possible approximations with
these three features and are identical to those that re-
searchers have historically constructed by hand. Our
algorithm thus relieves researchers of the tedium of
constructing ever more complicated transducers.

Cellular Automata

Before presenting our two filtering methods, we in-
troduce cellular automata in order to highlight an im-
portant setting where the multi-regular language fil-
tering problem arises, as well as to give some visual
intuition to our approach.

Let Σ be a discrete alphabet of k symbols. A local
update rule of radius r is any function φ : Σ2r+1 →
Σ. Given such a function, we can construct a global
mapping of bi-infinite strings Φ : ΣZ → ΣZ, called a
one-dimensional cellular automaton (CA), by setting:

Φ(σ)i := φ(σi−r . . . σi . . . σi+r) ,

where σi denotes the ith letter of the string σ. Since
the image under Φ of any period-N bi-infinite string
also has period N , it is common to regard Φ as a map-
ping of finite strings, ΣN → ΣN . When regarded in
this way, a CA is said to have periodic boundary con-
ditions.

For k=2 and r=1, there are precisely 256 local up-
date rules, and the resulting CAs are called the el-
ementary CAs (or ECAs). Wolfram [6] introduced a
numbering scheme for them: Order the neighbor-
hoods Σ3 lexicographically and interpret the symbols
{φ(η) : η ∈ Σ3} as the binary representation of an
integer between 0 and 255.

By interpreting a string’s letters as values assumed
by the sites of a discrete lattice, a CA can be viewed
as a spatially extended dynamical system—discrete
in time, space, and local state. Its behavior as such
is often illustrated through so-called space-time di-
agrams, in which the iterates {Φt(σ0)}t=0,1,2,... of an
initial string σ0 are plotted as a function of time. Fig-
ure 1, for example, depicts ECA 110 acting iteratively
on an initial string of length N = 150.

Due to their appealingly simple architecture, re-
searchers have studied CAs not only as abstract math-

FIG. 1: A space-time diagram illustrating the typical behav-
ior of ECA 110. Black squares correspond to 1s, and white
squares to 0s.

ematical objects, but as models for physical, chemical,
biological, and social phenomena such as fluid flow,
galaxy formation, earthquakes, chemical pattern for-
mation, biological morphogenesis, and vehicular traf-
fic dynamics. Additionally, they have been used as
parallel computing devices, both for the high-speed
simulation of scientific models and for computational
tasks such as image processing. More generally, CAs
have provided a simplified setting for studying the
“emergence” of cooperative or collective behavior in
complex systems. The literature for all these appli-
cations is vast and includes Refs. [7, 8, 9, 10, 11, 12,
13, 14, 15, 16].

Computational-Mechanics Structural Analysis of
CAs

The computational-mechanics [17, 18] structural
analysis of a CA rests on the discovery of a “pat-
tern basis”—a collection {Di} of automata that de-
scribe the emergent structural components in the CA’s
space-time behavior [19, 20]. Once such a pattern ba-
sis is found, conforming regions of space-time can be
seen as background domains through which coherent
structures not fitting the basis move. In this way,
structural features set against the domains can be
identified and analyzed.

More formally, Crutchfield and Hanson define a reg-
ular domainD to be a regular language (the collection
of strings recognized by some finite automaton) that
is:

1. temporally invariant—the CA maps D onto it-
self; that is, Φn[D] = D for some n > 0 —and

2. spatially homogeneous—the same pattern can
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FIG. 2: (Left) Space-time diagram illustrating the typical behavior of ECA 18—a CA exhibiting apparently random behavior,
i.e., the set of length-L spatial strings has a positive entropy density as L → ∞. (Right) The same space-time diagram
filtered with the regular domain D = sub ([0(0 + 1)]∗). (After Ref. [21].)

occur at any letter: the recurrent states in
the minimal finite automaton recognizing D are
strongly connected.

Once we discover a CA’s regular domains—either
through visual inspection or by an automated induc-
tion method such as the ǫ-machine reconstruction
algorithm [5]—the corresponding space-time regions
are, in a sense, understood. Given this level of discov-
ered regularity, we bleach out the domain-conforming
regions from space-time diagrams, leaving only “un-
modeled” deviations, whose dynamics can then be
studied. Sometimes, as is the case for the CAs we ex-
hibit here, these deviations resemble particles and,
by studying the characteristics of these particle-like
deviations—how they move and what happens when
they collide, we hope to understand the CA’s (possibly
hidden) computational capabilities.

Consider, for example, the apparently random
behavior of ECA 18, illustrated in Fig. 2. Al-
though no coherent structures present themselves to
the eye, computational-mechanics structural analysis
lays bare particles hidden within its output: Filter-
ing its space-time diagrams with the regular domain
D = sub([0(0+1)]∗)—where sub(L) denotes the regular
language consisting of all subwords of strings belong-
ing to the regular language L—reveals a system of
particles that follow random walks and pairwise an-
nihilate whenever they touch [20, 21, 22]. Thus, by
blurring the CA’s deterministic behavior on strings,
we discover higher-level stochastic particle dynamics.
Although this loss of deterministic detail may at first
seem conceptually unsatisfying, the resulting view is
more structurally detailed than the vague classifica-
tion of ECA 18 as “chaotic”.

Thus, discovering domains and filtering them from

space-time diagrams is essential to understanding
the information processing embedded within a CA’s
output.

II. METHOD 1—FILTERING WITH A STACK

We now present the first method for solving the
general multi-regular language filtering problem with
which we began. Although the following method is
perhaps the most thorough and easiest to describe,
it requires an arbitrarily deep stack to compute. Its
description will rest upon a few basic ideas from au-
tomata theory. (Please refer to the first few para-
graphs of App. A, up to and including Lemma 2,
where these preliminaries are reviewed.)

To filter a string σ, this method identifies the col-
lection of its maximal substrings that the automata
{Di} accept. More formally, given a string σ, let σa,b
denote the substring σaσa+1 · · ·σb for a, b ∈ Z. If σ is
bi-infinite, extend this notation so that a = −∞ and
b = ∞ denote the intuitive infinite substrings. Place
a partial ordering ≺ on all such substrings by setting
σa,b ≺ σa′,b′ if a′ ≤ a ≤ b ≤ b′. Then let Pmax({Di}, σ)
denote the collection of maximal substrings σa,b (with
respect to ≺) that the {Di} accept—or, in symbols, let:

Pmax({Di}, σ) := {σa,b ∈ P : there is no σ′ ∈ P

with σa,b ≺ σ
′} ,

where P := {σa,b : Di accepts σa,b for some i}.
The following algorithm can be used to compute
Pmax({Di}, σ).

Algorithm 1. Input: The automata D1, . . . ,Dn and
the length-N string σ.
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Let A := Det(D1 ⊔ · · · ⊔ Dn).
Let s0 be A’s unique start state.
Let S and M be empty stacks.
For j = 1 . . .N do

Push (s0, j) onto S.
For each (s, i) ∈ S do

If there is a transition (s, σj , s
′) ∈ T (A)

then replace (s, i) with (s′, i) in S.
Otherwise, remove (s, i) from S.

If, in addition, (s, i) was at the bottom of S

then push the pair (i, j − 1) onto M.
Let (sf , if) be the pair at the bottom of S.
Push (if , N) onto M.

Output: M.

The following proposition is easily verified, and we
state it without proof.

Proposition 1. If σ is a finite string and if Mσ is the
output of the above algorithm when applied to σ, then
Pmax({Di}, σ) = {σa,b : (a, b) ∈Mσ}.

We summarize Prop. 1 by saying that Algorithm 1
solves the local filtering problem in the sense that it
can compute Pmax({Di}, w) over a finite, contractible
window w. (By contractible we mean that periodic
boundary conditions along the boundary of w are ig-
nored.)

The global filtering problem, which takes into ac-
count periodic boundary conditions, is considerably
more subtle. A somewhat pedantic example is filter-
ing the bi-infinite string 0Z consisting entirely of 0s
with the language sub[(0m1)∗]. (Recall that sub(L) is
our notation for the collection of substrings of strings
belonging to L.) The local approach applied to a fi-
nite length-N window 0N , where N < m, will re-
turn 0N itself as its single maximal substring; i.e.,
Pmax({sub[(0m1)∗]}, 0N) = {0N}. In contrast, the
global filter of 0Z will consist of heavily overlapping
length-m substrings beginning and ending at every
position within 0Z:

Pmax({sub[(0m1)∗]}, 0Z) = {0Z

a+10
Z

a+2 · · · 0
Z

a+m : a ∈ Z}.

Fortunately, by examining sufficiently large finite
windows, Algorithm 1 can also be used to solve this
more subtle global filtering problem in the case of a bi-
infinite string that is periodic. The following Lemma
captures the essential observation.

Lemma 1. Suppose σ is a period-N bi-infinite string.
Then every maximal substring σa,b ∈ Pmax({Di}, σ)
must have length ≤ m ·N , where m := max{|S(Di)|}i,
or else Pmax({Di}, σ) must consist of σ−∞,∞ = σ, alone.

Proof. Our argument is a variation on the proof of
the classical Pumping Lemma from automata the-
ory. Suppose that σa,b ∈ Pmax({Di}, σ), a and b are
finite, and b − a + 1 > m · N . Then one of the do-
mains, say Di, accepts σa,b. By definition, this means

there is a sequence of transitions in T (Di) of the form
(sa, σa, sa+1), (sa+1, σa+1, sa+2), . . . , (sb, σb, sb+1). Con-
sider the sequence of pairs:

{(si, i mod N)}bi=a ⊂ S(Di)× ZN .

Since:

b− a+ 1 > m ·N ≥ |S(Di)× ZN |,

the Pigeonhole Principle implies that this sequence
must repeat—say (sl, l mod N) = (sl′ , l

′ mod N) for in-
tegers l < l′. But then Di must also accept any string
of the form:

σaσa+1 · · ·σl(σl+1 · · ·σl′ )
∗σl′+1 · · ·σb.

Since l mod N = l′ mod N , such strings correspond to
arbitrarily long substrings of the original bi-infinite
string σ. As a result, σa,b cannot be maximal. This
contradiction implies that either (i) a and b are not
both finite or (ii) b− a+ 1 ≤ m ·N . A straightforward
generalization of our argument in fact shows that ei-
ther (i) both a and b are infinite or (ii) b − a + 1 ≤
m ·N .

A consequence of Lemma 1 is that we can solve the
global filtering problem by applying Algorithm 1 to a
window of length mN + 1.

Proposition 2. Suppose σ is a period-N bi-infinite
string and that Mσ′ is the output of Algorithm 1 when
applied to the finite string σ′ := σ1σ2 · · ·σmN+1, where
m := max{|S(Di)|}i. Then:

Pmax({Di}, σ) = {σa+qN,b+qN : (a, b) ∈Mσ′ , q ∈ Z} ,

unless Mσ′ consists of (1,mN +1) alone, in which case
Pmax({Di}, σ) = {σ−∞,∞ = σ}.

The major drawback of Algorithm 1, however, is its
worst-case compute time.

Proposition 3. The worst-case performance of the
stack-based filtering algorithm (Algorithm 1) has or-
der O(N2), where N is the length of the input string σ.

Proof. For each j = 1 . . .N , the algorithm pushes a
new pair (s0, j) onto the stack S and then advances
each pair on S. In the case that A accepts the entire
string σ, the algorithm will never remove any pairs

from S and will thus advance a total of
∑N

j=1 j =
1
2N(N + 1) pairs. The proposition follows since it is
possible to advance each pair in constant time.

III. METHOD 2—FILTERING WITH A
TRANSDUCER

The second method—and our primary focus—is to
algorithmically construct a finite transducer that ap-
proximates the stack-based Algorithm 1 by printing
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sequences of labels i over segments of σ recognized by
the automaton Di. When, at the end of such a seg-
ment, the transducer encounters a letter forbidden by
the prevailing automaton Di, it prints special sym-
bols until it resynchronizes to a new automaton Dj .
The special symbols consist of labels for the kinds of
domain-to-domain transition and λ, which indicates
that classification is ambiguous.

In this way, the transducer approximates the stack-
based algorithm by jumping from one maximal sub-
string to the next, printing a few special symbols in
between. Because it does not jump to a new maximal
substring until the preceding one ends, however, the
transducer can miss the true beginning of any max-
imal substring that overlaps with the preceding one.
But if no more than two maximal substrings overlap
at any given point of σ, then it is possible to com-
bine the output of two transducers, one reading left-
to-right and the other reading right-to-left, to obtain
the same output as the stack-based algorithm.

These shortcomings are minor, and in exchange
the transducer gains several significant advantages
over the stack-based algorithm it approximates: It re-
quires only a finite amount of memory, runs in linear
time, and gives immediate output for each letter read.

Although finite transducers are generally consid-
ered less sophisticated than stack-based algorithms
in the sense of computational complexity, the con-
struction of this transducer is considerably more in-
tricate than the preceding stack-based algorithm and
is, in fact, our principal aim in the following.

Our approach will be to construct a transducer
Filter({Di}) by ‘filling in’ the forbidden transitions of
the automatonA := Det(D1⊔· · ·⊔Dn). We will thus tie
our hands behind our backs at the outset by permit-
ting the transducer to remember only as much about
past input as does the automaton A while recognizing
domain strings.

Unfortunately, A’s states will generally preserve
too little information to facilitate optimal resynchro-
nization. It is possible, however, to begin with elabo-
rately constructed, equivalent, non-minimal domains
D′
i that yield an automaton A′ := Det(D′

1 ⊔ · · · ⊔ D
′
n)

whose states do preserve just enough information
to facilitate optimal resynchronization. The trans-
ducer obtained by ‘filling in’ the forbidden transi-
tions of this automaton A′ represents the best pos-
sible (transducer) approximation of the stack-based
algorithm. We present a preprocessing algorithm
which produces these equivalent, non-minimal do-
mains {D′

i} = Optimize({Di}) at the end of our dis-
cussion of Method-2 filtering.

The idea underlying our construction is the follow-
ing. Suppose that while reading the string σ we are
recognizing an increasingly long string accepted by Di
when we encounter a forbidden letter a. In accepting
σ up to this point, the automaton A will have reached
a certain state s ∈ S(A) that has no outgoing tran-

sition corresponding to the letter a. Our goal is to
create such a transition by examining the collection
of all possible strings that could have placed us in the
state s and to resynchronize to the state of A that is
most compatible with the potentially foreign strings
obtained by appending to these strings the forbidden
letter a.

In this situation there will be two natural desires.
On the one hand, we wish to unambiguously resyn-
chronize to as specific a domain state as possible; but,
on the other, we wish to rely on as little of the imag-
ined past as possible. (We use the term imagined be-
cause our transducer remembers only the state s ∈
S(A) we have reached—not the particular string that
placed us there.) To reflect these desires, we introduce
a partial ordering on the collection of potential resyn-
chronization states {Si,l}, where i measures the speci-
ficity of resynchronization and l the length of imag-
ined past.

We now implement this intuition in full detail. Our
exposition relies heavily on ideas from automata the-
ory. (We now urge reading App. A in its entirety.)

As above, letA := Det(D1⊔· · ·⊔Dn) and let S(A)
ψA

→֒
S(D1⊔· · · ⊔Dn) be the canonical injection provided by
Lemma 2 in App. A. Assume that there is a canonical
injection S(D1) ⊔ · · · ⊔ S(Dn) →֒ S(A) and that we can
therefore regard the sets S(Di) as subsets of S(A). An
example of this situation is depicted in Fig. 3. A suffi-
cient condition for the existence of such an injection is
that each Di is minimal and that Lang(Di) 6⊂ Lang(Dl)
for i 6= l. Minimality is far from required, however,
and the assumption is valid for a much larger class
of domains. (Put informally, it suffices if we can asso-
ciate to each state s ∈ S(D1 ⊔ · · · ⊔ Dn) a string that
corresponds to a unique path through D1 ⊔ · · · ⊔ Dn—
one that leads to s.)

Let T be a transducer with the same states, start
state, and final states as A, but with the transitions:

T (T ) :={(s, a|f(s′), s′) : (s, a, s′) ∈ T (A)} ,

where:

f(s′) =

{

i if φA(s′) ⊂ S(Di) ,

λ otherwise ,

and where λ is a new symbol in the output alpha-
bet Σ′ indicating that domain labeling was not pos-
sible, for example, because the partial string read so
far belongs to more than one or none of the automata
{Di}. To recapitulate, the transducer’s output alpha-
bet Σ′ consists of three kinds of symbol: domain labels
{1 . . . n}, domain-domain transition types {1, 2, . . . , p},
and ambiguity λ.

The transducer T ’s input, In(T ), recognizes pre-
cisely those strings recognized by the given domains.
Our goal is to extend T by introducing transitions of
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FIG. 3: The domains D1 and D2 (top) and the automaton
A = Det(D1 ⊔ D2) (bottom). Start states are indicated by
dotted arrows from the word “Start”, and final states are
darkened. Notice that the states of A correspond to collec-
tions of states of D1 and D2 and that the former are canoni-
cally injected into the latter, here by the map n 7→ [n].

the form:

{(s, a|h(s, a), g(s, a)) : s ∈ S(T ) = S(A), a ∈ Σ,

and there are no transitions

of the form (s, a, ·) ∈ T (A)} ,

where the functions g(s, a) and h(s, a) are de-
fined in the following paragraphs. The transducer
Filter({Di}) obtained by adding these transitions to
T will then have the desired property that its input
In(Filter({Di})) will accept all strings [29].

Let Wl denote the collection of strings correspond-
ing to length-l paths throughA beginning in any of its
states, but ending in state s, and let W ′

l+1 denote the
collection of strings obtained by appending the letter a
to the strings of Wl. The strings

⋃

l≥0W
′
l are accepted

by the finite automatonAs,a obtained by adding a new
state f and a transition (s, a, f) to A, and by setting
Start(As,a) := S(As,a) and Final(As,a) := {f}. An ex-

ample is shown in Fig. 4, where the four-state domain
has a transition added from state [2] on symbol 1,
which was originally forbidden.

FIG. 4: The semi-deterministic automaton A[2],1 (top) ob-
tained by adding a state f = [9] and its deterministic ver-

sion Det(A[2],1) (bottom) with states relabeled with the in-
tegers 1 . . . 17 in order to simplify later diagrams.

In order to choose the resynchronization state
g(s, a) for the forbidden transition (s, a), we examine
the strings of

⋃

l≥0W
′
l that also belong to one or more

of the domains {Di}. We do this by constructing the
automaton Det(As,a)∩A, which we call the resynchro-
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nization automaton. By Lemma 3, there is a canoni-
cal, although not necessarily injective, association:

φ : S(Det(As,a) ∩ A)→ S(A)

given by the composition:

S(Det(As,a)∩A) →֒ S(Det(As,a))×S(A) → S(A) ,

where the right-most map is the second-factor projec-
tion, (s, s′) 7→ s′.

The resynchronization automaton Det(As,a) ∩ A
may reveal several possible resynchronization states.
To help distinguish among them, we put them into
sets {Si,l} where i measures the specificity of resyn-
chronization and l the length of imagined past. More
precisely, let Si,l denote those states s ∈ S(A) to which
φ associates at least one state s′ ∈ Final(Det(As,a)∩A)
(i.e. s = φ(s′)) satisfying the following two conditions:
(1) s corresponds, under Lemma 2, to precisely i states
of D1 ⊔ · · · ⊔ Dn and (2) there is a length-l path from
the unique start state of Det(As,a) ∩ A to s′.

Give the sets {Si,l} the dictionary ordering; that
is, let Si,l < Si′,l′ if i < i′ or if i = i′ ∧ l < l′.
The set S|S(A)|,0 consists of the unique start state of
Det(As,a) ∩ A. Thus, by the well ordering principle,
there must be a unique, least set among the sets {Si,l}
that consist of a single state, say {s′}. Let g(s, a) := s′,
and let h(s, a) := h′(s, s′) = h′(s, g(s, a)), where h′ is
any injection S(T ) × S(T ) →֒ Σ′ (chosen independent
of s and a). An example of this construction is shown
in Fig. 5.

The transducer is completed by repeating the above
steps for all forbidden transitions.

Computability of the transducer Filter({Di})

Although the transducer Filter({Di}) is well de-
fined, it is perhaps not immediately clear that it is
computable. After all, we appealed to the well order-
ing principle to obtain a least singleton set {s′} among
the sets {Si,l}. In fact, infinitely many sets Si,l pre-
cede the stated upper bound S|S(A)|,0—for instance,
all of the sets S1,N do, provided |S(A)| > 1.

The construction is nevertheless computable, be-
cause for each i the sequence of sets Si,N must even-
tually repeat. In fact, we can compute this sequence
of sets exactly by automata-theoretic means.

Proposition 4. The transducer Filter({Di}) is com-
putable.

Proof. Let Z[C] denote the automaton obtained by
relabeling all of the automaton C ’s transitions with
0s. This automaton will almost certainly be nonde-
terministic. The equivalent deterministic automa-
ton Det(Z[C]) is useful, because the state it reaches
when accepting the string 0l corresponds precisely,

FIG. 5: The resynchronization automaton Det(A[2],1) ∩ A
(top). Here S1,3 consists of the state (13, [6]) alone, and all
other S1,• are empty. So we choose s′ = [6] and add a tran-
sition ([2], 1|h′([2], [6]), [6]) to T (bottom).

under Lemma 2, to the collection of states that can
be reached by length-l paths through C.

Moreover, since Det(Z[C]) is defined over a single
letter, yet deterministic and finite, it must have a
special graphical structure: its single start state s0
must lead to a finite loop after a finite chain of non-
recurrent states. (Actually, if C has no loops whatso-
ever, there will not even be a loop.) Thus, its states

have a linear ordering: s0
0
→ s1

0
→ · · ·

0
→ sm

0
→

sm+1
0
→ · · ·

0
→ sm+m′

0
→ sm. An example is illustrated
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in Fig. 6, where m = 4 and m′ = 0.
By Lemma 2 the states {sk} correspond to collec-

tions of states of C under an injection:

ψZ[C] : S(Det(Z[C])) →֒{S ⊂ S(Z[C])}

={S ⊂ S(C)}.

Let C := Det(As,a) ∩ A in the preceding discussion.
As before, by Lemma 3, there is a function:

φ : S(Det(As,a) ∩ A)→ S(A) .

Let S∗,l ⊂ S(A) denote those states defined by the
formula:

S∗,l := φ[ψZ[C](sl) ∩ Final(Det(As,a) ∩A)] .

FIG. 6: The automaton Z[Det(D
[2],1
1 ) ∩ A] (top) and its de-

terministic version Det(Z[Det(D
[2],1
1 ) ∩A]) (bottom).

Finally, let Si,∗ denote those states of A that cor-
respond to precisely i states of D1 ⊔ · · · ⊔ Dn; that is,
let:

Si,∗ := {s ∈ S(A) : |φA(s)| = i} ,

where φA : S(A) →֒ {S ⊂ S(D1 ⊔ · · · ⊔ Dn)} is the
injection provided by Lemma 2.

The sets Si,l can then be computed as the intersec-
tions Si,∗ ∩ S∗,l, and we need only examine these for
1 ≤ i ≤ |S(D1)| + · · · + |S(Dn)| and 0 ≤ l ≤ m +m′ to
discover the least one under the dictionary ordering
that is a singleton {s′}.

We summarize the entire algorithm.

Algorithm 2. Input: The regular domains
D1, . . . ,Dn.

– Let A := Det(D1 ⊔ · · · ⊔ Dn).
– Choose any injection h′ : S(A)× S(A) →֒ Σ′.
– Make A into a transducer T by adding the sym-

bol i as output to any transition ending in a state
corresponding to states of only one domain Di
and by adding λs as output symbols to all other
transitions.

– For each forbidden transition (s, a) ∈ S(A) ×
Σ(A), add a transition to T through the follow-
ing procedure do

– Construct the automaton As,a by adding to
A the transition (s, a, f), where f is a new
state, and by letting f be its only final state.

– Construct the automaton Det(Z[Det(As,a) ∩
A]), where Z[C] is the automaton obtained
by relabeling all of C ’s transitions with 0s.
Its states will have a natural linear order-
ing s0 → s1 → · · · → sm+m′ .

– Let Si,∗ and S∗,l be the subsets of S(A) de-
fined by:

S∗,l := φ[ψDet(Z[Det(As,a)∩A])(sl)

∩ Final(Det(As,a) ∩ A)] and

Si,∗ := {s ∈ S(A) : |ψA(s)| = i}.

– Find the singleton set {s′} among the sets:

{Si,∗ ∩ S∗,l : 1 ≤ i ≤ |D1|+ · · ·+ |Dn|,

0 ≤ l ≤ m+m′}

that occurs first under the dictionary order-
ing.

– Add the transition (s, a|h′(s, s′), s′) to T .
Output: Filter({Di}) := T .

Algorithmic Complexity

Proposition 5. The worst-case performance of the
transducer-constructing algorithm (Algorithm 2) has
order no greater than:

|A| · (|Σ| − 1) · exp ◦ exp (2 · |A|+ 1) ,
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where |A| has order exp(|D1|+ · · ·+ |Dn|).

Proof. The algorithm’s most expensive step is the
computation of Det(Z[Det(As,a) ∩ A]). Unfortunately,
because computing Det(G) has order exp(|G|), and be-
cause computing G ∩H has order |G| · |H|, this compu-
tation has order exp ◦ exp (2 · |A|+ 1).

Finally, recall that the algorithm computes
Det(Z[Det(As,a) ∩ A]) for every forbidden transition
(s, a) of A. A rough upper bound for the number of
such transitions is |A| · (|Σ| − 1). From these two
upper bounds the proposition follows.

Although this analysis may at first seem to ob-
jurgate the transducer-constructing algorithm, the
reader should realize that, once computed, T can be
very efficiently used to filter arbitrarily long strings.
That is, unlike the stack-based algorithm, its perfor-
mance is linear in string length. Thus, one pays dur-
ing the filter design phase for an efficient run-time
algorithm—a trade-off familiar, for example, in data
compression.

Constructing optimal transducers from non-minimal
domains, a preprocessing step to Algorithm 2

Recall that we constructed the transducer
Filter({Di}) by ‘filling in’ the forbidden transi-
tions of the automaton A := Det(D1 ⊔ · · · ⊔ Dn). This
proved somewhat problematic, however, because A’s
states do not always preserve enough information
about past input to unambiguously resynchronize
to a unique, recurrent domain state. In order to
help discriminate among the several possible resyn-
chronization states, we introduced the partially
ordered sets {Si,l}. But even so, several attractive
resynchronization states often fell into the same set
Si,l. So, lacking any objective way to choose among
them, we resigned ourselves to a less attractive
resynchronization state occurring in a later set Si′,l′ ,
simply because it appeared alone there, making
our choice unambiguous. If only the states of the
automaton A preserved slightly more information
about past input, then such compromises could be
avoided.

In this section we present an algorithm that splits
the states of a given collection {Di} of domains to ob-
tain an equivalent collection {D′

i} = Optimize({Di}) of
domains that preserve just enough information about
past input to enable unambiguous resynchronization
in the transducer obtained by filling in the forbidden
transitions of the automaton A′ := Det(D′

1 ⊔ · · · ⊔D
′
n).

We will accomplish this by associating to each
state of the original domains Di a collection of au-
tomata that partition past input strings into equiv-
alence classes corresponding to individual resynchro-
nization states. We will then refine these partitions
so that Di’s transition structures can be lifted to

them and thus obtain the desired domains {D′
i} =

Optimize({Di}).
This procedure, taken as a preprocessing step to Al-

gorithm 2, will thus produce the best possible trans-
ducer for Method-2 multi-regular language filtering.

We now state our construction formally. If s′ ∈
S(A), then letAs′ denote the automaton that is identi-
cal to the automaton A except that its only final state
is s′. Additionally, if (s, a) is a forbidden transition of
the automaton D1 ⊔ · · · ⊔Dn, then let B(s, a, s′) denote
the automaton satisfying the formula:

B(s, a, s′) · a = Det(As,a) ∩ As′ ,

where · denotes concatenation. That is, let B(s, a, s′)
denote the automaton that is identical to the au-
tomaton Det(As,a) ∩ As′ except that its final states
are given by {sf : (sf , a, s

′
f ) ∈ T (⋄), s′f ∈ Final(⋄)},

where ⋄ := Det(As,a) ∩ As′ . Note that in most cases
Lang(B(s, a, s′)) will be empty.

Next we associate to each state s ∈ S(D1 ⊔ · · · ⊔ Dn)
a collection Γ(s) of automata. If the state s has no
forbidden transitions, let Γ(s) := {Σ∗}. If the state s
has at least one forbidden transition, however, then
let Γ(s) denote the collection of automata:

Γ(s) := Disjoin({Σ∗ · B(s, a, s′) :

(s, a, ·) 6∈ T (A), s′ ∈ S(A)}) ,

where Disjoin({Cγ}) denotes the coarsest partition of
⋃

γ Lang(Cγ) by automata {Eǫ} that is compatible with

the automata {Cγ}. That is, Disjoin({Cγ}) denotes
the smallest collection {Eǫ} of automata satisfying
(i)

⋃

ǫ Lang(Eǫ) =
⋃

γ Lang(Cγ) and (ii) Lang(Cγ) ∩

Lang(Eǫ) is either empty or equal to Lang(Eǫ) for all
γ and ǫ.

It is possible to compute Disjoin({Cγ}) inductively
with the formula:

Disjoin({C1, C2, . . . , Cm}) =

{C1 \ (C2 ⊔ · · · ⊔ Cm)} ∪

{C1 ∩ C
′ : C′ ∈ Disjoin({C2, . . . , Cm})} ∪

{C1 \ C
′ : C′ ∈ Disjoin({C2, . . . , Cm})}.

Note that
⋃

E∈Γ(s) Lang(E) = Σ∗ for all states s ∈

S(D1 ⊔ · · · ⊔ Dn). This is because Lang(B(s, a, s′)) con-
tains only the empty string if s′ ∈ S(A) is the unique
state reached on input a from A’s starting state—that
is, if (s0, a, s

′) ∈ T (A), where {s0} = Start(A).
Our goal is to create for each original domain Di an

equivalent domainD′
i by splitting each state s ∈ S(Di)

into states of the form (s, E), where E ∈ Γ(s). But to
endow these split states with a transition structure
equivalent to Di’s, we typically must refine the sets
Γ(s) further. We must construct a refinement Γ′(s) of
each Γ(s) with the property that if (s, a, s′) is a transi-
tion of Di, then to each E ∈ Γ′(s) there corresponds a
unique E ′ ∈ Γ′(s′) with Lang(E · a) ⊂ Lang(E ′). Given
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such refinements Γ′(s), we can take the pairs {(s, E) :
s ∈ S(Di), E ∈ Γ′(s)} as the states of D′

i and equip

them with transitions of the form (s, E)
a
→ (s′, E ′),

and thus obtain an equivalent, but non-minimal, do-
main D′

i.
The following algorithm can be used to compute the

desired refinements Γ′(s).

Algorithm 3. Input: The domain D and the func-
tion Γ that assigns to each state s ∈ S(D) a collection
Γ(s) of automata that partition Σ∗.

– For each state s ∈ S(D), let:

Γ′(s) := Disjoin
(⋃

{Γ′(s, a, s′) : (s, a, s′) ∈ T (D)}
)

,

where:

Γ′(s, a, s′) := {E ′′α}α and

{E ′′α · a}α := {(E · a) ∩ E ′ : E ∈ Γ(s), E ′ ∈ Γ(s′)}.

– If Γ′(s) 6= Γ(s) for some state s ∈ S(D), then
repeat with Γ′ in place of Γ. Otherwise:

Output: Γ′.

Proposition 6. Algorithm 3 eventually terminates,
producing the coarsest possible refinements Γ′(s) of
Γ(s) compatible with D’s transition structure.

Proof. We construct fine, but finite, refinements that
are compatible with D’s transition structure, then use
this result to conclude that Algorithm 3 must eventu-
ally terminate. Moreover, we also conclude that, when
Algorithm 3 terminates, it produces the coarsest pos-
sible refinements that are compatible with D’s transi-
tion structure.

Let {Ei} denote the potentially large, but finite, col-
lection of automata:

{Ei}
N
i=1 := Disjoin




⋃

s∈S(D)

Γ(s)



 ,

which partition Σ∗.
We refine the partition {Ei} to make it compati-

ble with D’s transitions by examining the automaton
F := Det(E1 ⊔ · · · ⊔ EN ). Since the automata {Ei}
cover Σ∗, the deterministic automaton F can have
no forbidden transitions, and all its states must be
final. Moreover, because the automata {Ei} are dis-
joint, each of F ’s states must correspond (under the
canonical injection ψF of Lemma 2) to final states of
precisely one automaton Ei. In this way, the automata
{Ei} correspond to a partition of the states of F .

Since each automaton Ei is equivalent to the au-
tomaton obtained by restricting F ’s final states to
those states corresponding (under ψF ) to final states
of Ei, we can refine the partition {Ei} by refining this
partition of F ’s states.

Although a coarser refinement may suffice, we can
always choose the partition consisting of single states.
That is, if s ∈ S(F), let Fs denote the automaton that
is identical to the automaton F except that its only
final state is s. Then {Fs : s ∈ S(F)} is a refinement
of the partition {Ei} with the special property that for
each automaton Fs and a ∈ Σ(F), there is a unique
automaton Fs′ such that Fs · a = Fs′ . Indeed, since F
is deterministic, s′ is the unique state corresponding
to a transition (s, a, s′) ∈ T (F).

If we let Γ′′(s) := {Fs′ : s′ ∈ S(F)} for each state
s ∈ S(D), then we obtain finite refinements of Γ(s)
compatible with D’s transition structure, as desired.

This result implies that Algorithm 3 must eventu-
ally terminate. After all, every refinement that Algo-
rithm 3 performs must already be reflected in Γ′′(s).
Moreover, since every refinement that the algorithm
performs is essential to compatibility with D’s tran-
sition structure, the algorithm must, upon termina-
tion, produce the coarsest (smallest) compatible re-
finement possible.

FIG. 7: The positive-entropy domains D1 and D2 of the
binary, next-to-nearest neighbor CA 2614700074. (After
Ref. [19].)

When applied to the domains D1 and D2 in Fig. 7,
for example, Algorithm 3 produces the equivalent,
non-minimal domains {D′

1,D
′
2} = Optimize({D1,D2})

shown in Fig. 8. Notice these domains’ many non-
recurrent states. These have almost no effect on the
automaton A′ := Det(

⊔

iD
′
i).

IV. APPLICATIONS

We now present four applications to illustrate how
the stack-based Algorithm 1 and its transducer ap-
proximation (Algorithms 2 and 3) solve the multi-
regular language filtering problem. The first is the
cellular automaton ECA 110, shown previously. Its
rather large filtering transducer is quite tedious to
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FIG. 8: The equivalent, non-minimal domains {D′
1,D

′
2} =

Optimize({D1,D2}) obtained by applying Algorithm 3 to the
positive-entropy domains D1 and D2 in Fig. 7. (D′

1 (top) and
D′

2 (bottom).) The “Start” arrows are omitted for clarity (all
states are starting), and some of the transitions are drawn
with dashed arrows to help the reader distinguish the re-
current states.

construct by hand, but Algorithm 2 produces it hand-
ily. The second example, ECA 18, which we have
also already seen, illustrates the stack-based Algo-
rithm 1’s ability to detect overlapping domains. The
third example shows our methods’ power to detect
structures in the midst of apparent randomness: the
domains and sharp boundaries between them are
identified easily despite the fact that the domains
themselves have positive entropy and their bound-
aries move stochastically. The example shows the
use of—and need for—domain-preprocessing (Algo-

FIG. 9: ECA 110’s principal domain, sub[(00010011011111)∗ ].

rithm 3). That is, rapid resynchronization is achieved
using a filter built from optimized, non-minimal do-
mains. The final example demonstrates the trans-
ducer (constructed by Algorithms 2 and 3) detecting
domains in a multi-stationary process—what is called
the change-point problem in statistical time-series
analysis. This example emphasizes that the methods
developed here are not limited to cellular automata.
More importantly, it highlights several of the sub-
tleties of multi-regular language filtering and clearly
illustrates the need for the domain-preprocessing Al-
gorithm 3.

ECA 110

First consider ECA 110, illustrated earlier in
Fig. 1. Its domains are easy to see visu-
ally; they have the form sub(w∗) for some fi-
nite word w. Its dominant domain is sub(w∗) =
sub[(00010011011111)∗], illustrated in Fig. 9. In fact,
the transducer Filter({sub[(00010011011111)∗]}), con-
structed from this single domain, filters ECA 110’s
space-time behavior well; see Fig. 10.

Notice, in that figure, the wide variety of particle-
like domain defects that the filtered version lays bare.
Note, moreover, how these particles move and collide
according to consistent rules. These particles are im-
portant to ECA 110’s computational properties; a sub-
set can be used to implement a Post Tag system [23]
and thus simulate arbitrary Turing machines [24].

ECA 18

Next, consider ECA 18, illustrated earlier in Fig. 2.
It is somewhat more challenging to filter, because its
domain D = sub ([0(0 + 1)]∗) has positive entropy. As
a result, its particles are difficult—although by no
means impossible—to see with the naked eye. Nev-
ertheless, the stack-based algorithm filters its space-
time diagrams extremely well, as illustrated in Fig. 2
(right). There, black rectangles are drawn where
maximal substrings overlap, and vertical bars are
drawn where maximal substrings abut. As men-
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FIG. 10: An ECA 110 space-time diagram (left) filtered by the transducer Filter({sub[(00010011011111)∗ ]}) (right).

tioned earlier, these particles, whose precise location
is somewhat ambiguous, follow random walks and
pairwise annihilate whenever they touch [20, 21, 22].

It is worth mentioning that the transducer
Filter({D}) produces a less precise filtrate in this
case—and that Filter(Optimize({D})) does no better.
Indeed, since breaks in ECA 18’s domain have the
form · · · 1(02n)1 · · · , the precise location of the domain
break is ambiguous: if reading left-to-right, it does
not occur until the 1 on the right of 02n is read;
whereas, if reading right-to-left, it does not occur un-
til the 1 on the left is read. In other words, if reading
left-to-right, the transducer Filter({D}) detects only
the right edges of the black triangles of Fig. 2 (right).
Similarly, if reading right-to-left, it detects only the
left edges of these triangles. In this case it is possi-
ble to fill in the space between these pairs of edges to
obtain the output of the stack-based algorithm.

CA 2614700074

Now consider the binary, next-to-nearest neighbor
(i.e. k=r=2) CA 2614700074, shown in Fig. 11. Crutch-
field and Hanson constructed it expressly to have the
positive-entropy domains D1 and D2 in Fig. 7 [19].

As illustrated in Fig. 11, the optimal transducer

Filter(Optimize({D1,D2})) filters this CA’s output well.
This illustrates a practical advantage of multi-regular
language filtering: it can detect structure embedded
in randomness. Notice how the filter easily identifies
the domains and sharp boundaries separating them,
even though the domains themselves have positive
entropy and their boundaries move stochastically.

It is worth noting that in place of the gray regions
of Fig. 11 so clearly identified by the optimal trans-
ducer as corresponding to the second domain D2, the
simpler transducer Filter({D1,D2}) produces a regu-
lar checkering of false domain breaks (not pictured).
This is because, when examining the sole forbid-
den transition (s, a) = (2, 1) of the first domain D1,
Algorithm 2 discovers that the first non-empty set
Si=1,l=4 = {2, 4, 5} contains three resynchronization
states. It unfortunately abandons both states 4 and 5,
which belong to the second domain, instead choosing
to resynchronize to the original state 2 itself, because
it occurs alone in the next set S1,5. As a result, the
transducer Filter({D1,D2}) has no transitions leav-
ing the first domain whatsoever and is therefore in-
capable of detecting jumps from the first domain to
the second. This is why it prints a checkering of do-
main breaks instead of correctly resynchronizing to
the second domain. The optimal transducer does not
suffer from this problem, because Algorithm 3 splits
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FIG. 11: Binary, next-to-nearest neighbor CA 2614700074 space-time diagram (left) filtered by the transducer
Filter(Optimize({D1,D2})) (right). The white regions on the right correspond to the domain D1, the gray to the domain
D2. The black squares separating these regions correspond to the interruption symbols h′(s, s′) that the transducer emits
between domains.

state 2 into several new ones, from which unambigu-
ous resynchronization to the appropriate state—2, 4,
or 5—is possible.

Change-Point Problem: Filtering Multi-Stationary
Sources

Leaving cellular automata behind, consider a bi-
nary information source that hops with low probabil-
ity between the two three-state domains D1 and D2 in
Fig. 12 (top). This source allows us to illustrate sub-
tleties in multi-regular language filtering and, in par-
ticular, in the construction of the optimal transducer
Filter(Optimize({Di}) can be.

To appreciate how subtle filtering with the do-
mains D1 and D2 is—and why the extra states of
Optimize({D1,D2}) are needed to do it—consider the
following. First choose any finite word w of the form:

(06 + 0312)∗03120.

As the ambitious reader can verify, both of the
strings 101111w and 110w belong to the domain D2. In
fact, both correspond to unique paths through D1⊔D2

ending in state 5 of Fig. 12 (top).

On the other hand, the strings 01111w1 and 10w1
are also domain words—the first belonging to D2, but
the second belonging to D1. In fact, 01111w1 corre-
sponds to a unique path through D1 ⊔ D2 ending in
state 6, while 10w1 corresponds to a unique path end-
ing in state 3.

As a result, these four strings are the maximal
substrings of the non-domain strings 101111w1 and
110w1, as indicated by the brackets below:

corresponds to a unique path
through D2 ending in state 5

︷ ︸︸ ︷

1 0 1 1 1 1 w 1
︸ ︷︷ ︸

corresponds to a unique path
through D2 ending in state 6

corresponds to a unique path
through D2 ending in state 5

︷ ︸︸ ︷

1 1 0 w 1
︸ ︷︷ ︸

corresponds to a unique path
through D1 ending in state 3

This example illustrates several important points.
First of all, it shows that when the naive transducer
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FIG. 12: Two similar three-state domains D1 (top left)
and D2 (top right) illustrate how subtle the construction
of the optimal transducer Filter(Optimize({Di})) can be:
the automaton A′ := Det(

⊔
Optimize({D1,D2})) (below),

from which the optimal transducer is constructed, has 69
states—the unoptimized automaton A := Det(D1 ⊔D2) (not
pictured) has 30.

Filter({D1,D2}) reaches the forbidden letter 1 at the
end of either of these two strings, the state 2 reached
does not preserve enough information to resynchro-
nize to the appropriate state—3 or 6, respectively. As
a result, it must either make a guess—at the risk
of choosing incorrectly and then later reporting an
artificial domain break (as in the preceding cellular

automaton example)—or else jump to one of its non-
recurrent states, emitting a potentially long chain of
λs until it can re-infer from future input what was
already determined by past input.

As unsettling as this may be, the example illus-
trates something far more nefarious. Since an ar-
bitrarily long word w can be chosen, it is impos-
sible to fix the problem by splitting the states of
Filter({D1,D2}) so as to buffer finite windows of past
input. In fact, because w is chosen from a language
with positive entropy, the number of windows that
would need to be buffered grows exponentially.

At this point achieving optimal resynchronization
might seem hopeless, but it actually is possible. This
is what makes Algorithm 3—and in particular the
proof that it terminates (Prop. 6)—not only surpris-
ing, but extremely useful.

Indeed, recall that instead of splitting states ac-
cording to finite windows, Algorithm 3 splits them
according to entire regular languages of past in-
put and that, by Prop. 6, a finite number of these
regular languages will always suffice to achieve
optimal resynchronization. And so, instead of
reaching the same original state 2 when reading
the strings 101111w and 110w, the optimal trans-
ducer Filter(Optimize({D1,D2})) reaches two distinct
states (2, E) and (2, E ′), where 101111w ∈ Lang(E)
and 110w ∈ Lang(E ′). These two split states
are labeled with the enlarged integers 15 and
13, respectively, in Fig. 12 (bottom), which shows
A′ := Det(

⊔
Optimize({D1,D2}))—the automaton

from which Filter(Optimize({D1,D2})) is constructed.
As illustrated in that figure, the optimal transducer
has 69 states—the unoptimized automaton A :=
Det(D1 ⊔ D2) (not pictured) has 30.

V. CONCLUSION

We posed the multi-regular language filtering prob-
lem and presented two methods for solving it. The
first, although providing the ideal solution, requires
a stack, has a worst-case compute time that grows
quadratically in string length and conditions its out-
put at any point on arbitrarily long windows of fu-
ture input. The second method was to algorithmi-
cally construct a transducer that approximates the
first algorithm. In contrast to the stack-based algo-
rithm it approximates, however, the transducer re-
quires only a finite amount of memory, runs in lin-
ear time, and gives immediate output for each let-
ter read—significant improvements for cellular au-
tomata structural analysis and, we suspect, for other
applications as well. It is, moreover, the best pos-
sible approximation with these three features. Fi-
nally, we applied both methods to the computational-
mechanics structural analysis of cellular automata
and to a version of the change-point problem from
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time-series analysis.

Future directions for this work include generaliza-
tion both to probabilistic patterns and transducers
and to higher dimensions. Although both seem diffi-
cult, the latter seems most daunting—at least from
the standpoint of transducer construction—because
there is as yet no consensus on how to approach the
subtleties of high-dimensional automata theory. (See,
for example, Refs. [25] and [26] for discussions of two-
dimensional generalizations of regular languages and
patterns.) Note, however, that the basic notion of
maximal substrings underlying the stack-based al-
gorithm is easily generalized to a broader notion of
higher-dimensional maximal connected subregions,
although we suspect that this generalization will be
much more difficult to compute.

In the introduction we alluded to a range of addi-
tional applications of multi-regular language filter-
ing. Segmenting time series into structural compo-
nents was illustrated by the change-point example.
This type of time series problem occurs in many ar-
eas, however, such as in speech processing where the
structural components are hidden Markov models of
phonemes, for example, and in image segmentation
where the structural components are objects or even
textures. One of the more promising areas, though,
is genomics. In genomics there is often quite a bit
of prior biochemical knowledge about structural re-
gions in biosequences. Finally, when coupled with
statistical inference of stationary domains, so that
the structural components are estimated from a data
stream, multi-regular language filtering should pro-
vide a powerful and broadly applicable pattern detec-
tion tool.
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APPENDIX A: AUTOMATA THEORY
PRELIMINARIES

In this appendix we review the definitions and re-
sults from automata theory that are essential to our
exposition. A good source for these preliminaries is
Ref. [27], although its authors employ altogether dif-
ferent notation, which does not suit our needs.

Automata

An automaton A over an alphabet Σ(A) is a
collection of states S(A), together with subsets
Start(A),Final(A) ⊂ S(A), and a collection of transi-
tions T (A) ⊂ S(A)×Σ(A)×S(A). We call an automa-
ton finite if both S(A) and T (A) are.

An automaton A accepts a string σ =
a1a2 · · · an if there is a sequence of transitions
(s1, a1, s2), (s2, a2, s3), . . . , (sn−1, an, sn) ∈ T (A) such
that s1 ∈ Start(A) and sn ∈ Final(A). Denote the
collection of all strings that A accepts by Lang(A).
Two automata A and B are said to be equivalent if
Lang(A) = Lang(B).

We can think of an automaton as a directed graph
whose edges are labeled with symbols from Σ(A).
In this view, an automaton accepts precisely those
strings that correspond to paths through its graph be-
ginning in its start states and ending in its final ones.

An automaton A is said to be semi-deterministic
if any pair of its transitions that agree in the first
two slots are identical, that is, any pair of transi-
tions of the form (s1, a, s2) and (s1, a, s

′
2) ∈ T (A) sat-

isfy s2 = s′2. A deterministic automaton is one that is
semi-deterministic and that has a single start state.
If A is deterministic, then each string of Lang(A) cor-
responds to precisely one path through A’s graph.

For two automata A and B, let A ⊔ B denote
their disjoint union—the automaton over the alpha-
bet Σ(A) ∪ Σ(B) whose states are the disjoint union
of the states of A and B, i.e. S(A ⊔ B) = S(A) ⊔ S(B)
(and similarly for its start and final states) and whose
transitions are the union of the transitions of A and
B. In this way, Lang(A ⊔ B) = Lang(A) ∪ Lang(B).

In this terminology, a domain is a semi-
deterministic finite automaton D whose states are all
start and final states, i.e. Start(D) = S(D) = Final(D),
and whose graph is strongly connected—i.e., there is
a path from any one state to any other.

Finally, a domain D is said to be minimal if all
equivalent domains D′ satisfy |S(D)| ≤ |S(D′)|.

Standard Results

Lemma 2. Every automaton A is equivalent to a
deterministic automaton Det(A). Moreover, Det(A)’s
states correspond uniquely to collections of A’s
states; in other words, there is a canonical injection

S(Det(A))
ψDet(A)

→֒ {S : S ⊂ S(A)}.

Lemma 3. If A and B are automata, then there is an
automaton A ∩ B that accepts precisely those strings
accepted by both A and B; that is, Lang(A ∩ B) =
Lang(A) ∩ Lang(B). If A and B are deterministic,
then so is A ∩ B. Moreover, there is a canonical in-
jection S(A ∩ B) →֒ S(A) × S(B), which restricts to
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injections Start(A ∩ B) →֒ Start(A) × Start(B) and
Final(A ∩ B) →֒ Final(A) × Final(B).

Transducers

A transducer T from an alphabet Σ(T ) to an alpha-
bet Σ′(T ) is an automaton on the alphabet Σ(T ) ×
Σ′(T ). We will use the more traditional notation
(s, b|c, s′) in place of (s, (b, c), s′) ∈ T (T ).

The input of a transducer T is the automaton
In(T ) whose states, start states, and final states are
the same as T ’s, but whose transitions are given by
T (In(T )) := {(s, b, s′) : (s, b|c, s′) ∈ T (T )}. Simi-
larly, the output of a transducer T is the automaton
Out(T ) whose transitions are given by T (Out(T )) :=
{(s, c, s′) : (s, b|c, s′) ∈ T (T )}.

A transducer T is said to be well defined if In(T ) is
deterministic, because such a transducer determines
a function from Lang(In(T )) onto Lang(Out(T )).

APPENDIX B: IMPLEMENTATION

In order to give the reader a sense for how the al-
gorithms can be implemented, we rigorously imple-
ment Algorithm 2 here in the programming language
Haskell [28]. Haskell represents the state of the art
in polymorphicly typed, lazy, purely functional pro-
gramming language design. Its concise syntax en-
ables us to implement the algorithm in less than a
page. Haskell compilers and interpreters are freely
available for almost any computer [30].

We emulate our exposition in the preceding sections
by representing a finite automaton as a list of starting
states, a list of transitions, and a list of final states,
and a transducer as a finite automaton whose alpha-
bet consists of pairs of symbols:

data FA s i = FA{faStarts :: [s ],
faTrans :: [(s , i , s)],

faFinals :: [s ]}

type Transducer s i o = FA s (i , o)

We need the following simple functions, which com-
pute the list of symbols and states present in an au-
tomaton:

faAlphabet :: Eq i ⇒ FA s i → [i ]
faAlphabet fa = nub [a | ( , a, )← faTrans fa ]

transStates :: Eq s ⇒ [(s , i , s)]→ [s ]
transStates trans =

nub $ foldl (λss (s , , s ′)→ s : s ′ : ss) [ ] trans

faStates :: Eq s ⇒ FA s i → [s ]
faStates fa = foldl union [ ] [faStarts fa,

transStates $ faTrans fa,
faFinals fa ]

We also require the following three functions: the
first two implement Lemmas 2 and 3, and the third
computes the disjoint union of a list of automata. To
expedite our exposition, we provide only their type
signatures:

faDet :: (Ord s ,Eq i)⇒ FA s i → FA [s ] i
faIntersect :: (Eq s ,Eq s ′,Eq i)⇒

FA s i → FA s ′ i → FA (s , s ′) i
faDisjointUnion :: [FA s i ]→ FA (Int , s) i

Notice that the first two functions return automata
whose states are represented as lists and pairs of the
argument automata’s states; these representations
intrinsically encode the Lemmas’ canonical injections.
The function faDisjointUnion returns an automaton
whose states are represented as pairs (i, s) where s
is a state of the ith argument automaton Di.

We use these representations frequently in the fol-
lowing implementation of Algorithm 2:

transducerFilterFromDomains :: (Eq s ,Ord s ,Eq i)⇒ [FA s i ]→ Transducer [(Int , s)] i Int

transducerFilterFromDomains faDs =
FA (faStarts faA) (baseTTrans ++ newTTrans) (faFinals faA)
where faA = faDet $ faDisjointUnion faDs -- A := Det(D1 ⊔ · · · ⊔ Dn)

baseTTrans = [(s , (a, f s ′), s ′) | (s , a, s ′)← faTrans faA ]
where f ss | length is ≡ 1 = head is -- transition ending in Di

| otherwise = 0 -- synchronization, λ
where is = nub $ map fst ss

forbiddenPairs = [(s , a) | s ← faStates faA, a ← faAlphabet faA ] \\ [(s , a) | (s , a, )← faTrans faA ]
newTTrans = map newTransition forbiddenPairs
newTransition (s , a) = (s , (a, o), s ′)

where faAsa = (FA (f : faStates faA) ((s , a, f ) : faTrans faA) [f ]) -- the automaton As,a

f = [(1 + length faDs , head $ faStarts $ head faDs)] -- the fresh state f used to build As,a

faDetAsaCapA = (faDet faAsa) ‘faIntersect ‘ faA -- the automaton Det(As,a ∩ A)
faZ = faDet $ zero faDetAsaCapA -- the automaton Det(Z[Det(As,a ∩ A)])
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reachableStateSeq = take (length $ faStates faZ ) -- the states s1, . . . , sm+m′

(iterate nextState $ head $ faStarts faZ )
where nextState s = head [s ′′ | (s ′, , s ′′)← faTrans faZ , s ′ ≡ s ]

sStarLs = map ((map snd) ◦ -- the sets {S∗,l}
m+m′

l=1
(intersect $ faFinals faDetAsaCapA)) reachableStateSeq

siStars = [nub -- the sets {Si,∗}i=1

[s | s ← map snd $ faFinals faDetAsaCapA, length s ≡ i ]
| i ← [1 . . length $ head $ faStarts faA ] ]

sijs = concatMap (λsiStar → map (intersect siStar) sStarLs) siStars -- the sets {Si,j}i,j
[s ′ ] = head $ filter (λsij → length sij ≡ 1) sijs -- the state s′ to which to synchronize
o = −1 -- domain break

zero fa = FA (faStarts fa) [(s , 0, s ′) | (s , , s ′)← faTrans fa ] (faFinals fa)

To implement the domain optimization algo-
rithm Optimize(•) is somewhat more—but not

overwhelmingly—complicated. In fact, we generated
the examples here by computer, rather than by hand.
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